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1. Let X be a complex normed linear space. Let f : X → C be a non-zero linear map. Show that
either f({x ∈ X : ||x|| ≤ 1}) is a bounded set or is all of C. In the second case show that ker(f) is
dense in X.

Solution: Since f : X → C is non-zero, there exists x ∈ X such that f(x) = r 6= 0. Since f is
linear, f(xr ) = 1, take y = x

r , therefore f(y) = 1. For each λ ∈ C, we have f(λy) = λf(y) = λ.
Therefore f maps all of C and f is not bounded map.

Now we prove that ker(f) is dense in X. We know that f({x ∈ X : ||x|| ≤ 1}) is not bounded.
We can find a sequence of non-zero vectors xn ∈ {x ∈ X : ||x|| ≤ 1} with |f(xn)| ≥ n for each

n = 1, 2, 3, .... Now suppose x /∈ ker(f), consider the sequence zn = x − f(x)
f(xn)

xn. We can easily

see that f(zn) = 0 therefore zn ∈ ker(f) for each n = 1, 2, 3, .... We have ||zn − x|| = || f(x)f(xn)
xn|| ≤

|| f(x)f(xn)
|| n→∞−−−−→ 0. Therefore it follows that x ∈ ker(f). As x was an arbitrary element not in

ker(f). Hence ker(f) = X. �

2. Show that for any Banach space X,⊕
∞

X = {{xn}n≥1 : xn ∈ X, sup
n≥1
||xn|| <∞}

equipped with the norm ||{xn}n≥1|| = supn≥1 ||xn|| is a Banach space.

Solution: Let x1, x2, ... be a Cauchy sequence in
⊕
∞
X. Here xk = (xk1 , x

k
2 , ...) for each k = 1, 2, ....

We have to find an element x in
⊕
∞
X such that xk converges to x. Given ε > 0, since xk is a

Cauchy sequence, we see that there exists an N > 0 such that ||xk−xl||∞ < ε for all k, l > N . Thus
sup
n≥1
||xkn − xln|| < ε for all k, l > N . In particular, we have ||xkn − xln|| < ε for all n and for all k, l >

N . This means that for each n, the sequence x1n, x
2
n, ... is a Cauchy sequence in X. Since X is

complete, thus we have a limit call it xn, therefore lim
k→∞

xkn = xn. Let x denote the sequence

x = (x1, x2, ...) and x ∈
⊕
∞
X. We show that xk converges to x. Choose ε

2 , we can find an

N > 0 such that ||xkn − xln|| ≤ ε
2 for all n and for all k, l > N . Taking limit l → ∞, we obtain

||xkn − xn|| ≤ ε
2 for all n and for all k, l > N . sup

n≥1
||xkn − xn|| ≤ ε

2 for all n and for all k > N . There

for ||xk − x||∞ ≤ ε
2 < ε for all k > N . This implies that xk converges to x. �

3. Let M = {f ∈ C([0, 1]) : f([0, 12 ]) = 0}. On the quotient space, let Φ : C([0, 1])/M → C([0, 12 ]) be
defined by Φ([f ]) = f |[0, 12 ]. Show that Φ is a well-defind, linear, onto, isometry.

Solution: First we show that Φ is well-defined. Let [f ], [g] ∈ C([0, 1])/M , if [f ] = [g] then
f(x) = g(x),∀x ∈ [0, 12 ], f |[0, 12 ] = g|[0, 12 ], thus Φ([f ]) = Φ([g]), there fore Φ is well-defined.

Now we show that Φ is linear. Let [f ], [g] ∈ C([0, 1])/M , Φ([f ] + [g]) = Φ([f + g]) = f + g|[0, 12 ] =

f |[0, 12 ] + g|[0, 12 ] = Φ([f ]) + Φ([g]). Let [f ] ∈ C([0, 1])/M and c is a scalar. Φ(c[f ]) = Φ([cf ]) =

(cf)|[0, 12 ] = cf |[0, 12 ] = cΦ([f ]).
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Now we show that Φ is onto. Let g ∈ C([0, 12 ]). Define a map f : [0, 1] → [0, 1] by f(x) := g(x) if
x ∈ [0, 12 ] and f(x) = g( 1

2 ) for x ∈ [ 12 , 1]. Then, clearly f ∈ C([0, 1]) and Φ([f ]) = f |[0, 12 ] = g.

Now we show that Φ is an isometry. Let the norm on C([0, 1])/M is denoted by ‖| · ‖| and is defined
by ‖|f +M‖| := inf{‖f + g‖ : g ∈ M} for any f ∈ C([0, 1]). Now, ‖|[f ]‖| = inf{‖f + g‖ : g ∈ M}.
Let λ := ‖f |[0, 12 ]‖ = sup{|f(x)| : x ∈ [0, 12 ]} and S := {‖f + g‖ : f ∈ C([0, 1]), g ∈ M}. For

g ∈ M and f ∈ C([0, 1]), ‖f + g‖ = sup{|f(x) + g(x)| : x ∈ [0, 1]} = Max{{sup{|f(x) + g(x)| : x ∈
[0, 12 ]}, sup{|f(x) +g(x)| : x ∈ [ 12 , 1]}} = max{λ, sup{|f(x) +g(x)| : x ∈ [ 12 , 1]}} ≥ λ i.e. λ is a lower
bound of S. Now, let sup{|f(x) + g(x)| : x ∈ [0, 12 ] = c1 and sup{|f(x) + g(x)| : x ∈ [ 12 , 1]} = c2. If
c1 ≥ c2 then we choose g = 0 and get inf(S) = λ. If c1 < c2 then assume that f attains c2 at some
points. Let p be a point in [ 12 , 1] such that f(p) = c2 and f(x) < c2 for x < p. Now, construct a
function g ∈M such that g is a line joining the poins ( 1

2 , 0) and (0,−c2) and g(x) = −c2 for x > p.
Then ‖f + g‖ = λ. And hence, λ = inf(S) = ‖|[f ]‖|.

�

4. Let X,Y be a LCTVS spaces. Let T : X → Y be an isomorphism. Suppose X∗ and Y ∗ are equipped
with the weak*-topology. Show that T ∗ : Y ∗ → X∗ is an isomorphism.

Solution: Let T ∗ : Y ∗ → X∗ is defined by T ∗(y∗)(x) = y∗(T (x)).
We show that T ∗ is linear, let y∗1 , y

∗
2 ∈ Y ∗, T ∗(y∗1 +y∗2)(x) = T ∗((y1 +y2)∗)(x) = (y1 +y2)∗(T (x)) =

(y∗1 + y∗2)(T (x)) = y∗1(T (x)) + y∗2(T (x)) = T ∗(y∗1)(x) + T ∗(y∗2)(x). Let c be a scalar and y∗ ∈ Y ∗,
T ∗(cy∗)(x) = T ∗((cy)∗)(x) = (cy)∗(T (x)) = cy∗(T (x)) = cT ∗(cy∗).
We show that T ∗ is one to one and onto, T ∗(y∗1)(x) = T ∗(y∗2)(x), y∗1(T (x)) = y∗2(T (x)) ∀x, thus
y∗1 = y∗2 . Therefore T ∗ is one to one. For x∗ ∈ X∗, take y∗ = x∗ ◦ T−1, then T ∗(y∗) = x∗, hence T
is onto.
We now show that T ∗ and (T ∗)−1 are continuous. T ∗(y∗) = y∗ ◦ T , Since T is continuous therefore
T ∗ is continuous. We know (T ∗)−1 = (T−1)∗, the continuity of T−1 will imply that the continuity
of (T ∗)−1. �

5. Give examples of two normed linear spaces, and a continuous linear map T between them such that
T ∗ has closed range but the range of T is not closed.

Solution: Let c00 be space of all sequences which have only finitely many nonzero elements with
sup norm and Let c0 be space of all sequences converges to 0 with sup norm. Take the identity map
I : c00 → c0, the range of I is not closed since c00 is dense subspace of c0. But c∗0 = c∗00 = l1, I∗ is
the identity maps from l1 to l1, therefore it is easy to see that I∗ has closed range. �

6. Construct a sequence fn : [0, 1] → [0, 1] of continuous functions such that ||fn|| = 1 for all n ≥ 1,
fn(t) → 0 for all t ∈ [0, 1]. Use the Riesz representation theorem to show that fn → 0 in the weak
topology of C[0, 1].

Solution:We define fn(t) as follows,

fn(t) =


nt if 0 ≤ t ≤ 1

n

2− nt if 1
n < t ≤ 2

n

0 if 2
n < t ≤ 1

then fn(t) ∈ C[0, 1], ||fn|| = 1 for n = 1, 2, ... and fn(t)→ 0 for all t ∈ [0, 1].
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Now we prove that fn → 0 in the weak topology of C[0, 1]. We have ||fn|| = 1 for n = 1, 2, ... and
fn(t) → 0 for all t ∈ [0, 1]. If f∗ ∈ (C[0, 1])∗, then by Riesz representation theorem there exists a

measure µ such that f∗(f) =
1∫
0

fdµ for every f ∈ C[0, 1].

We have |f∗(fn)− f∗(0)| = |
1∫
0

(fn(t)− 0)dµ| ≤
1∫
0

|fn(t)− 0|dµ.

Now, fn(t) → 0 for every t ∈ [0, 1] and |fn(t)| = 1. Hence by dominated convergence theorem, we
see that f∗(fn)→ 0. Thus fn → 0 in the weak topology.

�

7. Let D = {z : |z| < 1} be the open unit disk. Let A(D) denote the space of analytic functions
on D with family of semi-norms, pz(a) = |a(z)| for z ∈ D and a ∈ D. Let F = {p ∈ A(D) :
p is a polynomial of degree at most n}. Show that A(D) = F

⊕
Y (direct sum) for some closed

subspace Y ⊂ A(D).

Solution: Since A(D) is locally convex topological vector space and dim F = n+1 <∞. Using the
Lemma 4.21(a), page-106 from the book Walter Rudin, Functional Analysis, F is complemented in
A(D). Therefore there exist a closed subspace Y ⊂ A(D) such that A(D) = F

⊕
Y . �

8. Let X be a LCTVS space. Let C ⊂ X be a closed convex set. Show that C is also closed in the
weak-topology.

Solution: Fix y ∈ Cc, Using Hahn-Banach separation theorem, there exists a linear functional φ
such that φ(y) < infx∈C φ(x). This φ provides a weak open set containing y and disjoint from C.
Thus X − C is weakly open. Hence C is weakly closed.

�
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